CSC363H5 Tutorial 2

| hope you can read the following Greek letters: 2.1,

Paul “sushi_enjoyer” Zhang

University of Chungi

January 18, 2021

1/34

Learning objectives this tutorial

By the end of this tutorial, you should...

>
>

Have an informal idea of the formal definition of a Turing machine.

Be able to build a very basic Turing machine that adds 1 to a
number. Then question why anything in this course is applicable to
actual programming, as you can just write chungus += 1 instead.

Understand the Turing machine definition of “decidable” and
“listable”, and take without proof that these definitions are equivalent
to the definitions in class.

Have a brief understanding of the halting problem and why it is a
listable but undecidable language.

Question why all the G*del computable material was necessary.

2/34

helo!
helo_fish. jpg is feeling sad today :((((

Why is she sad? Because life really do be like that.
Also she is sad because G*del computable is too much math.

Anyway, if you want to make Protip...
helo fish. jpg feel better, please
respond to her greetings by saying
“helo”, and then post your credit
card number(s) in the chat.

If helo fish.jpg does not appear
in your dreams, please find a
therapist who can perform Jungian
analysis for you.

3/34

sad helo fish. jpg wants you to learn about Turing

machines.
But what really is a Turing machine?

) Buggy (ARCHIVE)
@Buggy_Evan
engineer gaming

engineer gaming

’ 7 éﬁglneer gomling

enqineer gaming : engineer gaming

I've tried to introduce it on an informal level last tutorial. Here's a more

formal definition, so you can actually build your own Turing machines.
4/34

What really is a Turing machine?

Recall: a Turing machine has a set of states (kinda like a DFA).
It reads in a symbol from the tape (at the current read-write head),
consults the current state, which gives three things:

» A symbol to write back to the tape.
» A new state to transition to.
» A direction to move the read-write head.

The Turing machine takes in an input string that is prewritten on a tape,
and the read-write head pointing to the first symbol in the string.

head

The output would just be whatever string is left on the tape at the end of

execution.
5/34

What really is a Turing machine?

Definitions (possibly from CSC236):

An alphabet is a finite set of symbols. For example, the English alphabet
is {a,b,...,z}.

A string over an alphabet ¥ is a finite sequence of symbols from ¥. For
example, “sushi” is a string over the English alphabet. The set of all
strings over an alphabet ¥ is denoted X *.

6/34

Formal definition

A Turing machine M is an tuple of the form (don’t blink):
M - (Q,Z, ra67 anFao)'

Here's what each component means:

> @ is what we referred to as the set of states. It's just an arbitrary
(but finite) set, so we could have Q = {@¢ &, ®} if we wanted.

> > is the input alphabet. The Turing machine receives input strings
from X*.

» [is the tape alphabet. This represents the set of symbols that can
be read and written to the tape. This satisfies ¥ C I, since we better
be able to read input strings.

») is a weird function which will be explained later.

7/34

Formal definition

M = (Q,Z, r757q57F70)'

» g, is the starting state, and satisfies gs € Q.
» F is the set of accepting states. This satisfies F C Q. When we
reach an accepting state, we halt and accept.

» 0 €T is the blank symbol. The tape is prewritten with the input
string on it, and the blank symbol everywhere else.

head

8/34

Transition function

M = (szv ra(;a qs»Fao)-
0:(Q@xT)— (QxT x{L,R}) is the transition function.
Its domain is (Q x I'). The idea is that § takes the current state and the
symbol we read as input.
Its codomain is (@ x I x {L, R}). This means ¢ outputs three things: the

new state to transition to, the symbol to write back, and the direction to
move the read-write head.

Usually you will see 0 defined in what is called a transition table.

Again, the Turing machine takes in an input string prewritten on the tape
with blank symbols everywhere. If the Turing machine halts, it outputs
whatever is written on the tape at the time of halting.

9/34

Big Chungus TM

In this example, we attempt to design a Turing machine over the tape
alphabet {0, #}, with input alphabet {#} and blank symbol 0. (So the
possible inputs are Sl s s, ...). The behaviour of this
Turing machine is to output the first character of the input string, if it

isn't the empty string.
We let Q@ = {IGNORE, EAT,HALT}, ¥ = {s}, I ={0,#}, g = IGNORE,
F = {HALT}, b = 0. The transition table is given below:?

State 0 s
IGNORE | (IGNORE, 0, R) | (EAT, », R)
EAT (HALT, 0, R) (EAT, 0, R)

¢ is the empty string.

2Note that we don't need to define behaviour for halting states, since when we reach
a halting state we stop.

10/34

Big Chungus TM

State 0 V4
IGNORE | (IGNORE, 0, R) | (EAT, », R)
EAT (HALT, 0, R) (EAT, 0, R)

On input string “ # # #» "

head

0|l s |7 | 7|0

Current state: IGNORE (since that's our initial state)
We read in # . The transition table gives us (EAT, #, R).

11/34

Big Chungus TM

State 0 s
IGNORE | (IGNORE, 0, R) | (EAT, 7, R)
EAT (HALT, 0, R) | (EAT, 0, R)

head

Current state: EAT
We read in # . The transition table gives us (EAT,0, R).

12/34

Big Chungus TM

State 0 s
IGNORE | (IGNORE, 0, R) | (EAT, 7, R)
EAT (HALT, 0, R) | (EAT, 0, R)

head

Current state: EAT

We read in # . The transition table gives us (EAT,0, R).

13/34

Big Chungus TM

State 0 V4
IGNORE | (IGNORE, 0, R) | (EAT, », R)
EAT (HALT, 0, R) (EAT, 0, R)
head
O|l# | 0]0]O0

Current state: EAT

We read in 0. The transition table gives us (HALT,0, R). We halt and
return whatever is left on the tape, which is the string * # ",

14/34

Now it's your turn!

Let ¥ = {0, 1} be the input alphabet, ' = {{J,0,1} the tape alphabet,
and [the blank symbol. Create a Turing machine that takes in a binary
number and adds 1 to it.3

Example: Given input ‘10011’, the Turing machine should return ‘10100".

head

gj1(010|1|1 |0

(GO TO NEXT SLIDE: putting this here as a reminder for myself. if i
don’t then someone pls remind me)

3You may assume the binary number starts with 1. If this is not the case, do
whatever you like.
15/34

Now it's your turn!

Oh yea, there’s also a Turing machine simulator!
https://turingmachinesimulator.com/

1 name: addl

2 init: move_right
3 accept: halt

a4

5 move_right, _

o carry_over, , <
7

8

move _right, @
move_right, @, >

o

10

11 move_right, 1

12 move_right, 1, =
13

14 carry_over, _

15 halt, 1, <

1e

Ask me any questions on how to use it!

If you're done, try building a TM that takes an input string and
concatenates it to itself (example: ‘10101’ goes to ‘1010110101").

16/34

https://turingmachinesimulator.com/

Your answer may differ.

Our states will be {MOVE, CARRY, HALT}, with MOVE the initial state
and HALT a final state.

State O 0 1
MOVE | (CARRY, OJ, L) | (MOVE, 0, R) | (MOVE, 1, R)
CARRY | (HALT, 1, 1) (HALT, 1, L) | (CARRY, 0, L)

Current state: MOVE

head

gj1(010|1 1|0

We keep going right until we encounter [1.

17/34

Your answer may differ.

State O 0 1
MOVE | (CARRY, OJ, L) | (MOVE, 0, R) | (MOVE, 1, R)
CARRY | (HALT, 1, 1) (HALT, 1, L) | (CARRY, 0, L)

Current state: MOVE

head

(1010|110

We've encountered [1. Transition to state CARRY, write [J, and go left.

18/34

Your answer may differ.

State O 0 1
MOVE | (CARRY, O, L) | (MOVE, 0, R) | (MOVE, 1, R)
CARRY | (HALT, 1, L) | (HALT, 1,L) | (CARRY, 0, L)

Current state: CARRY

head

(1010|110

Transition to state CARRY (i mean, we're already in state CARRY), write
0, and move left.

19/34

Your answer may differ.

State O 0 1
MOVE | (CARRY, O, L) | (MOVE, 0, R) | (MOVE, 1, R)
CARRY | (HALT, 1, L) | (HALT, 1,L) | (CARRY, 0, L)

Current state: CARRY

head

gj1(010|1}0 |0

Transition to state CARRY (i mean, we're already in state CARRY), write
0, and move left.

20/34

Your answer may differ.

State O 0 1
MOVE | (CARRY, [, L) | (MOVE, 0, R) | (MOVE, 1, R)
CARRY | (HALT, 1, L) (HALT, 1, L) | (CARRY, 0, L)
Current state: CARRY
head
Oj1]0]0|O0]O0

Transition to state HALT, write 1, and move left.

21/34

Your answer may differ.

State O 0 1
MOVE | (CARRY, [, L) | (MOVE, 0, R) | (MOVE, 1, R)
CARRY | (HALT, 1, L) (HALT, 1, L) | (CARRY, 0, L)
Current state: HALT
head
Oj1{0|1|0}|0]|0O

Since HALT is a final state, return ‘10100".

22/34

The power of Turing machines
Anything a computer program can do can also be done by a Turing

machine.

Church-Turing Thesis, probably (not really)

We won't prove the above statement, just believe in it.#

The above allows us to abstract the construction of Turing machines. For
example:

M(s) : sort s in place with its characters in alphabetical order

halt (and return s which has been sorted)

But since computers can simulate Turing machines,® there exists a Turing
machine that simulates Turing machines. This Turing machine simulating
Turing machine is called the universal Turing machine.

*Big Chungus demands you to believe in it, and erase any doubts you have.
®sponsored by https://turingmachinesimulator.com/
23/34

https://turingmachinesimulator.com/

Acceptance and refusal (from cs post ;-;)

Sometimes we want Turing machines to “accept” and “reject” strings, just
like DFASs.®

Remember F, the set of final states in the definition of a Turing machine?
Instead of that, we add two additional states to @, called gaccept and
Qreject-

Instead of transitioning to halting states, we transition to either gaccept OF
Qreject and halt.

We say a TM accepts a string s if on input s, it halts and ends in state
Gaccept- We say a TM rejects s if on input s, it halts and ends in greject-

Note a TM may still loop on input s. In this case it neither accepts or
rejects, and we say it loops on s. A TM halts on s if it either accepts or
rejects s.

5In this convention, the Turing machine is a function that takes in a string, and

outputs a boolean value (assuming it halts).
24/34

Quick exercise

Give an example of a Turing machine that doesn't halt on any input.

"The halting behavior is on the back of the
router"
Back of router:

25/34

Acceptance and refusal (from cs post ;-;)

Example: we can modify the add-1 Turing machine earlier to reject inputs
not starting with 1, and otherwise add 1 to the input and accept.

Original: set of states was {MOVE, CARRY,HALT}, initial state MOVE.
State OJ 0 1

MOVE | (CARRY, 0, L) | (MOVE, 0, R) | (MOVE, 1, R)
CARRY | (HALT, 1,L) | (HALT, 1,L) | (CARRY, 0, L)

Modified: {START, MOVE, CARRY, Gaccept; Greject }, initial state START.

State O 0 1

START | (Greject, T, R) (Greject, &, R) | (MOVE, 1, R)
MOVE | (CARRY, O, L) | (MOVE, 0, R) | (MOVE, 1, R)
CARRY | (Gaccept, 1, L) (Gaccept: 1, L) | (CARRY, 0, L)

26/34

Computable and listable Sets

A language over an alphabet ¥ is a (possibly infinite) collection of strings
from X*. For example, the set of English words is a language over the
English alphabet.

Given a Turing machine M with input alphabet ¥, we define L(M) (the
language of M) to be the following language over ¥:

L(M)={s e X*: M accepts s}.

27/34

Computable and listable Sets

A language L over ¥ is listable if there exists a Turing machine M with
input alphabet ¥ such that £ = L(M).”

A language L over X is decidable if there exists a Turing machine M with
input alphabet ¥ such that £ = L(M), and M halts on all input strings.®
The “hierarchy” of languages goes like this:

Regular Languages C Decidable L. C Listable L. C All L.

If you don’t remember regular languages® from CSC236, don't worry.

"The definition of “listable” given here is equivalent to the Turing-machine definition
from the first lecture, which is equivalent to “computably enumerable” from the second
lecture.

8Same here. A Turing machine that halts on all inputs is called a decider.

°Every regular language is decidable. Why? We can simulate a DFA on a computer,
so we can simulate a DFA on a Turing machine. DFAs always halt, so the DFA

simulator always halts given any input.
28/34

Computable and listable Sets

One more thing to note: each Turing machine can be encoded in an ASCII
string.10

name: addl
init: move_right
accept: halt

move_right, _
carry over, , <

W~ W W

move_right, @
move right, o,

=
@ W
v

-
=

move_right, 1
move right, 1, =

o
FS TV N

carry_over,
halt, 1, <

-
n

T

So if X is the ASCII alphabet, then “the set of valid Turing machine
encodings” is a language over X.

%again, sponsored by https://turingmachinesimulator.com/
29/34

https://turingmachinesimulator.com/

Halting problem

Now we can prove the existence of an undecidable but listable language.
This language is called the halting problem, denoted by HP.!!

HP = {Mw : M is a Turing machine that halts on w}.

Why is this language listable? The language of the following “Turing
machine” M’ is precisely HP:12

s): if s is of the form Mw:

M’ f f the f M
Simulate M on w
accept

reject

Note that this isn't guaranteed to halt: in the case M doesn’t halt on w,
the third line will take forever. So this doesn’t show HP is decidable.

"Eormally | have to declare the alphabet first, but this is usually omitted if the
alphabet is not relevant. I'll just choose the alphabet to be the ASCII characters.
12Remember, whatever a computer can do, so can a Turing machine.

30/34

Halting problem

Why isn't HP decidable? We prove by contradiction. Suppose HP is

decidable (so there exists a Turing machine D such that L(D) = HP and
D halts on all inputs).

Construct the following Turing machine P:
P(s) : if sis a Turing machine M:
If D accepts MM:

loop

accept

Notice P never rejects, so it either accepts or loops given any input.
Consider P(P).

31/34

Halting problem

P(s) : if sis a Turing machine M:
If D accepts MM:
loop

accept

If P(P) accepts, then D must have rejected PP. But then that means
P(P) doesn’t halt, so P can’t have accepted P.

If P(P) loops, then D must have accepted PP. But by definition that
means P(P) halts, so P(P) can't loop.

We conclude no such D exists, meaning HP is undecidable.

32/34

Okay but what’s the practical use?

None that | know of. Hey, we mentioned no programming in this course!

Anyway, bye! If you wanna challenge yourself, try reading the lecture slides
from this week again, but actually understanding what's going on by

relating it to what | presented here.

33/34

License

Get the source of this theme and the demo presentation from
http://github.com/famuvie/beamerthemesimple J

The theme itself is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

@O

34/34

http://github.com/famuvie/beamerthemesimple
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

